

Présentation Flash du labo

Laboratoire Polymères et Materiaux Avancés UMR 5268 CNRS/SOLVAY LYON

Remarques

Laboratory general way of working :

SOLVAS sking more from chemistry®

. . . .

- The topics of the lab are relevant to applications and industrial issues
- BUT to make real progress we develop entirely new ideas relevant to fundamental concepts of polymer physics:
 - Glass transition mechanisms in polymer, polymer blends, in the vicinity of interfaces
 - Reinforcement mechanisms in filled elastomers
 - Inter-diffusion of polymer blends or polymer/solvent systems close and bellow Tg
 - Glass transition mechanisms in H-bonded polymers
 - Statistical mechanics of rupture and damaging in soft and hard materials
 - Rheology of polymer blends (with or without nano-particle inclusions) : experiments, theory and modeling
 - Plasticization mechanisms at solid and molten states

Les forces

Lab Staff

- Solvay : 4 Researchers + 1 senior Technician
- 3 Academic researchers (CNRS : 2 DR2 + 1 CR2 hired in 2014 "Concours")
- 10 non permanent

Non Permanent People Evolution

From 2007 to 2013, 23 people have exited the Lab (10 Post Docs, 13 PhDs)

- 12 p. hired by Industry :
- 10 p. have found Academic Position :

Objective to reach a permanent staff of 4 Academic researchers.

Les thématiques principales

- Heterogeneous polymer systems: polymer blends and dispersion of nano-fillers
 - Filled elastomers and Experimental control of Morphology
 - Mesoscopic Theory & modeling
 - Dynamics close to T_g
 - Filled elastomer blends
 - Foams
- Physical properties of polymers with strong interactions
 - Experimental characterization of Miscibility and dynamics
 - Multiscale modeling
 - Damaging & fatigue of semi-crystalline polymers
- Physical properties of filled polymers
 - Dynamics and reinforcement
 - Filler/surface interaction Modeling
 - Mesoscopic Theory & modeling
 - Wear & Tear

- Understanding and controlling fatigue damage in reinforced semicrystalline polymers
 - \Rightarrow Experimental and Modeling work
 - \Rightarrow Polyamide : extension by a factor of 3 of the fatigue lifetime
 - $\Rightarrow\,$ 2 patents and several papers published

Permeability-Shock property compromise

- \Rightarrow to reduce the water intake of polyamides materials
- \Rightarrow Collaboration with chemists from Solvay
- ⇒ new oligomer additives with strong interaction with the polar groups of polyamide have been proposed and synthesized.
- \Rightarrow 2 patents

Physics of Reinforcement of filled rubbers

- ⇒ Combination of Mechanical measurements, Xray diffraction with in situ stretching and Quantitative measurements of crosslink densities with NMR in filled and unfilled elastomers.
- ⇒ Theoretical understanding of the effect of dynamical heterogeneities and filler/polymer interactions in the mechanical properties of filled rubber (reinforcement and Payne Effect)
- Diffusion in polymers close to and below Tg.
 - \Rightarrow Calculation of the diffusion of solvent through a polymer matrix
 - \Rightarrow Description of the so-called "case II" diffusion.
 - $\Rightarrow~$ Development of theoretical models and simulation tools

Fatigue in Polyamid

Molecular Control of H bonded Polymer

Synthesis & characterization of new materials

Preparation of **block PA66/6HIA copolymers** by Reactive Extrusion

Phenolic functions anchored in the crystalline phase thanks to PA66 blocks

→ Coupling between the amorphous and the crystalline phases is preserved

Co-polycondensation reaction at the molten state

Assessment of fatigue Life time (Wohler curves)

At low stress (long lifetime), block copolymers including phenol functions can enhance the fatigue lifetime

But it turned out that PA66/6HIA copolymers exhibited :

- Different Tg (what we wanted to control and make vary)
- Different molecular weights / weights distribution
- Different crystalline structures, crystalline fractions

We proposed a general interpretation frame in order to evaluate the relative contribution of these different microstructural parameters to fatigue lifetime

- Understanding and controlling fatigue damage in reinforced semicrystalline polymers
 - \Rightarrow Experimental and Modeling work
 - \Rightarrow Polyamide : extension by a factor of 3 of the fatigue lifetime
 - $\Rightarrow\,$ 2 patents and several papers published

Permeability-Shock property compromise

- \Rightarrow to reduce the water intake of polyamides materials
- \Rightarrow Collaboration with chemists from Solvay
- ⇒ new oligomer additives with strong interaction with the polar groups of polyamide have been proposed and synthesized.
- \Rightarrow 2 patents

Physics of Reinforcement of filled rubbers

- ⇒ Combination of Mechanical measurements, Xray diffraction with in situ stretching and Quantitative measurements of crosslink densities with NMR in filled and unfilled elastomers.
- ⇒ Theoretical understanding of the effect of dynamical heterogeneities and filler/polymer interactions in the mechanical properties of filled rubber (reinforcement and Payne Effect)
- Diffusion in polymers close to and below Tg.
 - \Rightarrow Calculation of the diffusion of solvent through a polymer matrix
 - \Rightarrow Description of the so-called "case II" diffusion.
 - $\Rightarrow~$ Development of theoretical models and simulation tools

Compromis perméabilité/résistance au choc

Formulation d'additifs à liaisons fortes + flexibilité

- Matériau Polyamide à propriétés barrières aux fluides élevées

(Polyamide material having high fluid barrier properties.) FR 0952395 2009 & WO 2010/115951 A1 2010.

- Composition polyamide modifiée comprenant au moins un composé phénolique (Modified polyamide composition containing at least one phenolic compound). WO 2011/048055 A1 2011

Synthesis based on reneawble raw matters

- Understanding and controlling fatigue damage in reinforced semicrystalline polymers
 - \Rightarrow Experimental and Modeling work
 - \Rightarrow Polyamide : extension by a factor of 3 of the fatigue lifetime
 - $\Rightarrow\,$ 2 patents and several papers published

Permeability-Shock property compromise

- \Rightarrow to reduce the water intake of polyamides materials
- \Rightarrow Collaboration with chemists from Solvay
- ⇒ new oligomer additives with strong interaction with the polar groups of polyamide have been proposed and synthesized.
- \Rightarrow 2 patents

Physics of Reinforcement of filled rubbers

- ⇒ Combination of Mechanical measurements, Xray diffraction with in situ stretching and Quantitative measurements of crosslink densities with NMR in filled and unfilled elastomers.
- ⇒ Theoretical understanding of the effect of dynamical heterogeneities and filler/polymer interactions in the mechanical properties of filled rubber (reinforcement and Payne Effect)
- Diffusion in polymers close to and below Tg.
 - \Rightarrow Calculation of the diffusion of solvent through a polymer matrix
 - $\Rightarrow~$ Description of the so-called "case II" diffusion.
 - $\Rightarrow~$ Development of theoretical models and simulation tools

Reinforcement in Filled Natural Rubber

Elastomers

Arnaud Vieyres, Roberto Pérez-Aparicio, P. Sotta, O. Sanseau, D. Long P.-A. Albouy (LPS Orsay)

To compare specific response of the elastomer matrix to the global response (mechanics) We combine:

- Mechanical measurements (global response)
- Xray diffraction with in situ stretching (selective response of the elastomer matrix)
- Quantitative measurements of crosslink densities with NMR

- Understanding and controlling fatigue damage in reinforced semicrystalline polymers
 - \Rightarrow Experimental and Modeling work
 - \Rightarrow Polyamide : extension by a factor of 3 of the fatigue lifetime
 - $\Rightarrow\,$ 2 patents and several papers published

Permeability-Shock property compromise

- \Rightarrow to reduce the water intake of polyamides materials
- \Rightarrow Collaboration with chemists from Solvay
- ⇒ new oligomer additives with strong interaction with the polar groups of polyamide have been proposed and synthesized.
- \Rightarrow 2 patents

Physics of Reinforcement of filled rubbers

- ⇒ Combination of Mechanical measurements, Xray diffraction with in situ stretching and Quantitative measurements of crosslink densities with NMR in filled and unfilled elastomers.
- ⇒ Theoretical understanding of the effect of dynamical heterogeneities and filler/polymer interactions in the mechanical properties of filled rubber (reinforcement and Payne Effect)

Diffusion in polymers close to and below Tg.

- \Rightarrow Calculation of the diffusion of solvent through a polymer matrix
- \Rightarrow Description of the so-called "case II" diffusion.
- \Rightarrow Development of theoretical models and simulation tools

Diffusion in Polymer blends close to the glass transition temperature

Spatial model describing polymer blends (A/B)

 ✓ Spatial distribution of relaxation times on a scale of a dynamical heterogeneity

✓ Dynamics (Onsager like description)

Spatial diffusion in polymer blends close to T_g

Phase diagram of blend of immiscible polymers. The two polymers have a degree of polymerisation X=50. The UCST critical temperature Tc is equal to 440 K. The blend is composed of a fast polymer ($T_g = 250 \text{ K}$) and a slow polymer ($T_g = 390 \text{ K}$).

Les perspectives de développement

- Development of our Rheology activity
 - Novel instrumentation to study nonlinear shear rheology of highly elastic soft matter
 - Collaboration with chemical synthesis groups.
- Participation of the local structuration of polymer material research (Pôle Rhône Alpes) with the help of Axel'One, ITE IDEEL, ...

- Maintain our planning to get "a decent amount" our consolidate budget from external funded projects (ANR, H2020, ...)
- Develop our panel of studied materials to Solvay Specialty polymer portofolio (Polysulfones, PEEK) or fluoro- polymers (PVDF, ...)